Imaging cervical cytology with scanning near-field optical microscopy (SNOM) coupled with an IR-FEL
نویسندگان
چکیده
Cervical cancer remains a major cause of morbidity and mortality among women, especially in the developing world. Increased synthesis of proteins, lipids and nucleic acids is a pre-condition for the rapid proliferation of cancer cells. We show that scanning near-field optical microscopy, in combination with an infrared free electron laser (SNOM-IR-FEL), is able to distinguish between normal and squamous low-grade and high-grade dyskaryosis, and between normal and mixed squamous/glandular pre-invasive and adenocarcinoma cervical lesions, at designated wavelengths associated with DNA, Amide I/II and lipids. These findings evidence the promise of the SNOM-IR-FEL technique in obtaining chemical information relevant to the detection of cervical cell abnormalities and cancer diagnosis at spatial resolutions below the diffraction limit (≥0.2 μm). We compare these results with analyses following attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy; although this latter approach has been demonstrated to detect underlying cervical atypia missed by conventional cytology, it is limited by a spatial resolution of ~3 μm to 30 μm due to the optical diffraction limit.
منابع مشابه
An imaging dataset of cervical cells using scanning near-field optical microscopy coupled to an infrared free electron laser
Using a scanning near-field optical microscope coupled to an infrared free electron laser (SNOM-IR-FEL) in low-resolution transmission mode, we collected chemical data from whole cervical cells obtained from 5 pre-menopausal, non-pregnant women of reproductive age, and cytologically classified as normal or with different grades of cervical cell dyskaryosis. Imaging data are complemented by demo...
متن کاملAn overview of scanning near-field optical microscopy in characterization of nano-materials
Scanning Near-Field Optical Microscopy (SNOM) is a member of scanning probe microscopes (SPMs) family which enables nanostructure investigation of the surfaces on a wide range of materials. In fact, SNOM combines the SPM technology to the optical microscopy and in this way provide a powerful tool to study nano-structures with very high spatial resolution. In this paper, a qualified overview of ...
متن کاملAn overview of scanning near-field optical microscopy in characterization of nano-materials
Scanning Near-Field Optical Microscopy (SNOM) is a member of scanning probe microscopes (SPMs) family which enables nanostructure investigation of the surfaces on a wide range of materials. In fact, SNOM combines the SPM technology to the optical microscopy and in this way provide a powerful tool to study nano-structures with very high spatial resolution. In this paper, a qualified overview of ...
متن کاملInfrared scanning near-field optical microscopy investigates order and clusters in model membranes.
Due to its surface sensitivity and high spatial resolution, scanning near-field optical microscopy (SNOM) has a significant potential to study the lateral organization of membrane domains and clusters. Compared to other techniques, infrared near-field microscopy in the spectroscopic mode has the advantage to be sensitive to specific chemical bonds. In fact, spectroscopic SNOM in the infrared sp...
متن کاملChemically resolved imaging of biological cells and thin films by infrared scanning near-field optical microscopy.
The infrared (IR) absorption of a biological system can potentially report on fundamentally important microchemical properties. For example, molecular IR profiles are known to change during increases in metabolic flux, protein phosphorylation, or proteolytic cleavage. However, practical implementation of intracellular IR imaging has been problematic because the diffraction limit of conventional...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016